Antibacterial effects of quaternary bis-phosphonium and ammonium salts of pyridoxine on Staphylococcus aureus cells: A single base hitting two distinct targets?

نویسندگان

  • Elena V Nikitina
  • Marina I Zeldi
  • Mikhail V Pugachev
  • Sergey V Sapozhnikov
  • Nikita V Shtyrlin
  • Svetlana V Kuznetsova
  • Vladimir E Evtygin
  • Mikhail I Bogachev
  • Airat R Kayumov
  • Yurii G Shtyrlin
چکیده

We studied the effects of quaternary bis-phosphonium and bis-ammonium salts of pyridoxine with lipophilic substituents on the survival and morphology of Staphylococcus aureus cells. We found that, while originating from the same base, they exhibit considerably different antimicrobial mechanisms. In the presence of Ca(2+) ions the MIC and MBC values of ammonium salt increased 100-fold, suggesting that Ca(2+) ions can successfully impede the membrane Ca(2+) ions exchange required for ammonium salt incorporation. In contrast, in the presence of quaternary phosphonium salt, the artificial capsular-like material was formed around the cells and the filamentous and chain-like growth of the cells was observed suggesting the disruption of the cell division mechanisms. Altogether, both pyridoxine derivatives successfully inhibited the growth of gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis) and Escherichia coli considerably, while demonstrated nearly no effect against Klebsiella pneumoniae and Pseudomonas aeruginosa. We suggest that due to their effects on distinct and likely complementary targets the derivatives of pyridoxine represent potentially perspective antibacterials with complicated adaptation and thus with lower risk of drug resistance development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Derivatives of Pyridoxine Exhibit High Antibacterial Activity against Biofilm-Embedded Staphylococcus Cells

Opportunistic bacteria Staphylococcus aureus and Staphylococcus epidermidis often form rigid biofilms on tissues and inorganic surfaces. In the biofilm bacterial cells are embedded in a self-produced polysaccharide matrix and thereby are inaccessible to biocides, antibiotics, or host immune system. Here we show the antibacterial activity of newly synthesized cationic biocides, the quaternary am...

متن کامل

Antibacterial activity of gemini quaternary ammonium salts.

A series of gemini quaternary ammonium salts (chlorides and bromides), with various hydrocarbon chain and spacer lengths, were tested. These compounds exhibited antibacterial activity against both Gram-positive and Gram-negative bacteria and were not mutagenic. The strongest antibacterial effect was observed for TMPG-10 Cl (against Pseudomonas aeruginosa ATCC 27853) and TMPG-12 Br (against Stap...

متن کامل

Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the a...

متن کامل

Synthesis, Structure, Surface and Antimicrobial Properties of New Oligomeric Quaternary Ammonium Salts with Aromatic Spacers.

New dimeric, trimeric and tetrameric quaternary ammonium salts were accomplished by reaction of tertiary alkyldimethyl amines with appropriate bromomethylbenzene derivatives. A series of new cationic surfactants contain different alkyl chain lengths (C4-C18), aromatic spacers and different numbers of quaternary nitrogen atoms. The structure of the products was confirmed by spectral analysis (FT...

متن کامل

Gemini Alkyldeoxy-D-Glucitolammonium Salts as Modern Surfactants and Microbiocides: Synthesis, Antimicrobial and Surface Activity, Biodegradation

Dimeric quaternary alkylammonium salts possess a favourable surface and antimicrobial activity. In this paper we describe synthesis, spectroscopic analysis, surface and antimicrobial activity as well as biodegradability of polymethylene-α,ω-bis(N,N-dialkyl-N-deoxy-D-glucitolammonium iodides), a new group of dimeric quaternary ammonium salts. This new group of gemini surfactants can be produced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • World journal of microbiology & biotechnology

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2016